Funded Awards

Export All:
Title Investigator Institute Fiscal Year FOA Number Status Project Number Priority Area Summary
Circuit mechanisms of evidence accumulation during decision-making Luo, Zhihao Princeton University 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
Dr. Luo will use optogenetic tools to inactivate specific brain structures while simultaneously recording neuronal activity across other brain areas in the rat during evidence accumulation tasks. This research could uncover the neural circuits that support the gradual accumulation of evidence during decision making.
Development of Line-Scan Temporal Focusing for fast structural imaging of synapse assembly/disassembly in vivo Boivin, Josiah R Massachusetts Institute Of Technology 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
Dr. Boivin will contribute to the development of high-resolution, high-throughput Temporal Focusing (TF) two-photon microscopy to achieve real-time monitoring of synapse assembly/disassembly in developing neural circuits in vivo in the mouse brain.
Engineering optogenetic tools for studying neuropeptide activity French, Alexander Robert Purdue University 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
Dr. French will develop a high throughput screening platform to identify peptides that activate opioid receptors in response to light, creating high-resolution tools to study the function of specific opioid neural circuits in the brain.
Ethical Safeguards for Exit and Withdrawal from Implanted Neurotechnology Research Sankary, Lauren Cleveland Clinic Lerner Com-cwru 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
Dr. Sankary will combine an assessment of the experience of research participants exiting from research studies involving implanted neurological devices with a critical evaluation of existing research practices and regulations that protect these subjects. The goal of this research is to determine the responsiveness of these safeguards to patient concerns and lay the groundwork for development of evidence-based guidelines for the ethical conduct of this research.
Genetic analyses of complete circuit formation in Caenorhabditis elegans Cook, Steven Jay Columbia Univ New York Morningside 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
Using the model system C. elegans, which has a simple, well characterized nervous system, Dr. Cook will develop new tools to create an exquisitely detailed map of a circuit in live animals and reveal the genetic factors that orchestrate assembly of a complete neural circuit.
In Vivo Imaging of Local Synaptic Neuromodulation by Dopamine Evans, Paul Robert Max Planck Florida Corporation 2018 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
Dopamine is a powerful neurotransmitter that facilitates memory formation and underlies reward-related behaviors, but current techniques to assess dopamine signaling in vivo lack sufficient specificity and spatiotemporal resolution. Evans will develop new fluorescent sensors for dopamine receptors and apply them to investigate the molecular mechanisms that underlie learning in mice in vivo. The biosensors will be used to visualize the dynamic activity of specific dopamine receptors in vitro, before they are virally expressed in the motor cortex in behaving mice. Employed during motor learning, these sensors should generate a sub-micron scale map of how dopamine receptor subtypes modulate long-term structural plasticity of cortical dendritic spines. The results could help shed light on how dopaminergic modulation correlates with structural and functional plasticity.
Investigating the hypocretin to VTA circuit in memory consolidation during sleep Borniger, Jeremy Stanford University 2018 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools

Brain-computer interfaces and neuroprosthetics have provided a significant benefit to patients with cervical spinal cord injuries. However, current technology is limited in its abilities to allow the user to control how much force is exerted by the prosthesis and to provide sensory feedback from the prosthetic hand. In a public-private collaboration with Blackrock Microsystems, Dr. Boninger and colleagues are looking to improve the dexterity of neuroprostheses by incorporating microstimulation of the somatosensory cortex. This stimulation could provide tactile feedback to the user and hopefully allow the user to better control the force applied. Ultimately, this approach will improve the dexterity and control of prosthetic limbs used by patients with spinal cord injuries.

Investigating the Role of Neurotensin on Valence Assignment During Associative Learning in the Basolateral Amygdala Olson, Jacob Michael Massachusetts Institute Of Technology 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
Dr. Olson will systematically identify, manipulate, and characterize the neural projections that release the neuropeptide neurotensin to the basolateral amygdala during behavior conditioning tests in mice to identify a new circuit that regulates associative learning.
Large-scale monitoring of sensory transformations in the mammalian olfactory system Burton, Shawn Denver University Of Utah 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
Dr. Burton will leverage recent enhancements in calcium indicators to image pre- and post-synaptic neural activity simultaneously in the mammalian olfactory system, gaining insight into how sensory information is transformed as it moves through a neural circuit.
Model behavior in zebrafish: characterization of the startle response Meserve, Joy Hart University Of Pennsylvania 2018 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
The startle response is disrupted (i.e., uncoordinated or weak) in several neurological and psychiatric disorders. Meserve will investigate the startle response using live imaging of neural activity in transparent larval zebrafish. The slc5a7 gene (required for acetylcholine synthesis) modulates the startle response in zebrafish, and human slc5a7 mutations are implicated in attention deficit disorder and major depression. This project will study slc5a7a’s role in neural circuit development and/or startle response. Circuit defects in slc5a7a mutants will be investigated via calcium imaging and whole-brain activity mapping of neurons known to be required for the startle response. Integrated studies on gene function, neural circuitry, and behavior will uncover the developmental stage and anatomical region where slc5a7a is required. These experiments may determine how slc5a7a promotes normal startle response, and contribute knowledge about how acetylcholine regulates behavior.
Neuronal and Dopaminergic Contributions to Dissimilar Evoked Hemodynamic Responses in the Striatum Walton, Lindsay Univ Of North Carolina Chapel Hill 2018 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
Blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) is a non-invasive imaging technique that infers increased brain activity from observed increases in cerebral blood flow. A notable exception to this relationship occurs in the striatum. Walton will investigate the activity of dopamine neurons, medium spiny neurons, and dopamine receptors, under conditions that evoke either blood vessel dilatation or constriction in the striatum. She will utilize optogenetic stimulation, synthetically-derived receptors, and receptor antagonist drugs to reveal the mechanisms underlying striatal positive and negative fMRI responses. These studies are important for the accurate interpretation of BOLD fMRI signals from brain regions with atypical hemodynamic responses.
The Application of Generalized Linear Models to Calcium Imaging Data for Optimal High-Dimensional Receptive Field Estimation and Identification of Latent Network Dynamics Keeley, Stephen L Princeton University 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
Dr. Keeley plans to develop and make publically available an efficient and flexible statistical framework to guide analysis of calcium imaging data, extending researchers’ ability to track the activity of hundreds or thousands of neurons at various spatial scales.