Exhibit C

Argus II Retinal Prosthesis System
Orion I Cortical Visual Prosthesis System (not yet approved)

Interested investigators may contact Dr. Robert Greenberg M.D. Ph.D. at bob@secondsight.com

The Argus II Retinal Prosthesis System is an FDA approved visual prosthesis. The system consists of an implant, a small portable computer and a pair of glasses with a miniature video camera.

Implant

Our implant is an epiretinal (that is, the retinal surface is the site of stimulation) prosthesis that includes a receiver coil (antenna), electronics, and an electrode array. It is implanted in and around the eye. The array has 60 platinum gray electrodes arranged in a 6x10 grid. Each electrode is 200 µm (0.008”) in diameter. The array covers about 20° of visual field (diagonally). The flexible polymer thin-film electrode array, which follows the curvature of the retina, is attached to the retina over the macula with a retinal tack. The extra-ocular portion of the Argus II Implant is secured to the eye by means of a scleral band and sutures.

Figure 1: Surgical implant as implanted schematic (surgical implantation is typically performed in 2 to 4 hours)

Figure 2: Electrode array. Current version contains 60 platinum gray electrodes
Externals

The external equipment consists of a pair of glasses and a video processing unit or VPU. The glasses include a miniature video camera and a transmitter coil. The Argus II Clinician Programming Kit is used to program the Argus II System stimulation parameters and video processing strategies for each patient. The software provides modules for electrode control, permitting the clinicians to program the amplitude, pulse-width, and frequency of the stimulation waveform of each electrode.

How it works

In a healthy eye, the photoreceptors (rods and cones) on the retina convert light into tiny electrochemical impulses that are sent through the optic nerve and to the brain, where they are decoded.
into images. If the photoreceptors no longer function correctly (as in RP and AMD), the first step in this process is disrupted and the visual system cannot transform light into images, causing blindness. The Argus II System is designed to bypass damaged photoreceptors altogether and provides real-time visual information to blind patients. The miniature video camera captures a scene and the video is sent to the small VPU where it is processed and transformed into instructions that are sent back to the glasses. These instructions are transmitted wirelessly to the receiver coil in the implant. The signals are then sent to the electrode array, which emits small pulses of electricity. These pulses bypass the damaged photoreceptors and stimulate the retina’s remaining cells, which transmit the visual information along the optic nerve to the brain. This process is intended to create the perception of patterns of light which patients can learn to interpret as real-time visual patterns.

Figure 5: The patient perceives patterns of light created by electrical stimulation.

The Argus II System has been extensively tested at the component, sub-assembly, and system levels for long term reliability. The hermetic electronics case has been demonstrated to prevent moisture accumulation inside the device for many years. The Argus II implant is specified to last a minimum of five years, however, in vitro tests and actual clinical data suggest the device should last much longer. Production implants have reached more than ten years of lifetime use in accelerated in vitro testing and more than seven years use in real time in patients under active stimulation and normal use conditions.
The Orion cortical stimulator is not yet FDA approved. We are currently in the process of preclinical laboratory and animal testing.

By implementing relatively minor modifications to the Argus II technology, the Orion I neural stimulator can be implanted directly on the surface of the brain in the visual cortex or other target areas, and may be able successfully to restore some functional vision in almost all cases of disease related blindness. Our small electronics case will be implanted under the scalp and the electronic array placed in the visual cortex region of the brain. A transmitter coil similar to the one in Argus II will send power and signals to the implanted device. Our electrode array may be placed in an indentation in the back of the brain where a location along the surface of the brain maps to a location in our visual world.

We anticipate that many of the challenges that we encountered and solved in the process of developing the Argus II System are largely the same challenges in developing a product intended for enabling some functional vision through directly stimulating the brain. For example, a robust implant with a large number of electrodes is required for a cortical or retinal visual prosthesis. We believe the knowledge and technology gained in the development of the Argus II System will contribute to accelerating the development of a cortical stimulator directed at treating blindness.

![Figure 7 – Placement of Orion I on the cortical surface](image-url)
Exhibit D

Argus II
 Surgical Manual
 Fitting Manual
 User Manual

Physical specifications, electrical specifications, programming parameters and other technical support related to Argus II and Orion I, as agreed to in a CRA.