Nonlinear Causal Analysis of Neural Signals
Abstract The goal of this research is to develop new multivariate data analysis techniques for neural recordings that reveal causal dependencies between recording sites. Delay Differential Analysis (DDA) is a robust and efficient nonlinear time-domain algorithm for time series data that complements linear spectral methods. DDA combines delay and differential embeddings in nonlinear dynamical systems to discriminate between different normal and abnormal cortical states with high temporal resolution and insensitivity to artifacts.