Circuit Diagrams

Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome

SUMMARY We present Connectome 2.0, the next-generation human MRI scanner for imaging structural anatomy and connectivity spanning the microscopic, mesoscopic and macroscopic scales. This work builds upon our expertise in engineering the first human Connectome MRI scanner with 300 mT/m maximum gradient strength (Gmax), the highest ever achieved for a human system, for the Human Connectome Project (HCP). The goal of the HCP was to map the macroscopic structural connections of the in vivo healthy adult human brain using diffusion tractography.

Ultra High Resolution Brain PET Scanner for in-vivo Autoradiography Imaging

We propose to design, build, and evaluate the Scanner Approaching in Vivo Autoradiographic Neuro Tomography (SAVANT), a next generation PET scanner for ultra-high resolution imaging of the human brain using hardware advances developed by members of our collaborative team to achieve unprecedented spatial resolution and count rate capabilities. The system will have a volumetric resolution close to 1 mm3 (isotropic spatial resolution close to 1 mm), which is approximately 27 fold better than the best dedicated brain PET scanners and 125 fold better than general purpose PET scanners.

Wireless High-Density Diffuse Optical Tomography for Decoding Brain Activity

Project Summary This grant will develop a wireless wearable high-performance, high-density diffuse optical tomography (DOT) instrument for mapping of brain function in naturalistic settings. Functional neuroimaging of healthy adults has enabled mapping of brain function and revolutionized cognitive neuroscience. Increasingly, functional neuroimaging is being used in younger age groups, and as a diagnostic and prognostic tool in the clinical setting. Its expanding application in the study of both health and disease necessitates new, more flexible tools.

A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects

PROJECT SUMMARY/ABSTRACT To develop maps at multiple scales of neuronal circuits in the human brain and study the brain dynamics, there is a need for non-invasive functional brain imaging with high spatiotemporal resolution operating in natural environments. Among non-invasive functional brain imaging methods, magnetoencephalography (MEG) is the only technology that can map cortical activity down to millimeter spatial resolution with millisecond time resolution. Current cryogenic MEG systems employ superconducting quantum interference device (SQUID) magnetometers.

Time-Gated Diffuse Correlation Spectroscopy for functional imaging of the human brain

Project Summary/Abstract Functional near-infrared spectroscopy (fNIRS) is a well-established neuroimaging method which enables neuroscientists to study brain activity by non-invasively monitoring hemodynamic changes in the cerebral cortex. In the last decade, the use of fNIRS has increased significantly with the formation of a society, with an exponential growth of users and publications, and with an increasing number of available commercial instruments.

4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents

ABSTRACT The overarching goal of this project is to develop, validate and implement a new modality for noninvasive functional imaging of neural currents deep in the human brain through the skull at unprecedented spatial and temporal resolution. Transcranial Acoustoelectric Brain Imaging (tABI) is a disruptive technology that exploits an ultrasound (US) beam to transiently interact with physiologic current, producing a radiofrequency signature detected by one or more surface electrodes.

NeuroExplorer: Ultra-high Performance Human Brain PET Imager for Highly-resolved In Vivo Imaging of Neurochemistry

Research applications of brain Positron Emission Tomography (PET) have been in place for over 40 years. The combination of quantitative PET systems with novel radiotracers has led to a numerous imaging para- digms to understand normal brain physiology including neurotransmitter dynamics and receptor pharmacology at rest and during activation. Brain-dedicated PET systems offer important advantages over currently available PET systems in terms of sensitivity and resolution. However, the state-of-the-art for brain PET has not progressed beyond the 20-year-old HRRT.

Toward functional molecular neuroimaging using vasoactive probes in human subjects

We propose to develop a probe technology for monitoring human brain function with molecular precision; in conjunction with magnetic resonance imaging (MRI) or other imaging modalities, the probes will provide a combination of sensitivity and resolution that could permit unprecedented noninvasive studies of dynamic neu- rophysiological processes in people.

Export to:
A maximum of 400 records can be exported.