Funded Awards

Export All:
Title Investigator Institute Fiscal Year FOA Number Status Project Number Priority Area Summary
Achieving ethical integration in the development of novel neurotechnologies Chiong, Winston University Of California, San Francisco 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
Novel neurotechnologies hold promise for treating neuropsychiatric disorders, but also raise profound neuroethics issues including self-ownership of our thoughts, emotions, and actions. Engaging patients and researchers in the early stages of neurotechnology research and clinical translation can help ensure ethical development of the field. This research study will be embedded in one of two projects funded by the DARPA BRAIN Initiative to develop implantable brain stimulation devices that both monitor and adaptively stimulate brain areas involved in mood and behavior regulation. Dr. Chiong and an interdisciplinary team with expertise in neuroscience, clinical care, law, philosophy, and social science will assess neuroethics issues associated with the DARPA-funded brain stimulation project. The overall goal is to enable acceptability and adoption of new treatments for neuropsychiatric disorders, by recognizing and incorporating the perspectives of patients, researchers, and other stakeholders into the design of these novel neurotechnological therapies.
Assessing the Effects of Deep Brain Stimulation on Agency Roskies, Adina L Dartmouth College 2018 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools

Deep brain stimulation (DBS), a method of modulating brain circuit function, is FDA-approved for certain brain disorders such as Parkinson’s Disease. The NIH BRAIN Initiative aims to launch neurotechnological developments that include new ways of directly affecting brain circuit function. Use of these novel interventions warrants careful consideration about ways in which brain stimulation may affect personal identity, autonomy, authenticity and, more generally, agency. In this project, Dr. Roskies and her team will develop an assessment tool to measure changes in agency due to direct brain interventions, and establish a database to catalogue these changes in agency in various patient populations receiving DBS. These efforts have the potential to facilitate improvements in therapeutic approaches and informed consent and will be used to develop a framework for further neuroethical thought about brain interventions, allowing us to better identify, articulate, and measure effects on agency.

Cognitive Restoration: Neuroethics and Disability Rights Fins, Joseph J. Weill Medical Coll Of Cornell Univ 2019 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools

Many traumatic brain injury (TBI) patients often experience chronic cognitive impairments that disrupt functioning and can interfere with societal reentry – current efforts aim to rapidly restore cognitive function to TBI patients. In doing so, a thorough understanding of the opportunities and challenges posed by rapid cognitive restoration is critical. To address this need, Dr. Joseph Fins and his team will interview patients and family members before implantation of thalamic deep brain stimulation (DBS) devices. These interviews will collect perspectives on risks and benefits, expectations and fears, as well as factors that are weighed during decision making. After implantation, interviews will collect perspectives on the impact of cognitive impairment and restoration. The project aims to develop legal theory that supports social reentry for TBI subjects who have achieved cognitive restoration, paving the way for maximizing patient-centered benefits of any therapeutic advance.

Enabling ethical participation in innovative neuroscience on mental illness and addiction: towards a new screening tool enhancing informed consent for transformative research on the human brain Roberts, Laura W Stanford University 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
The NIH BRAIN Initiative aims to accelerate the development of innovative neurotechnologies and their application to reduce the burden of brain disorders, including mental illnesses and substance use disorders. However, because the brain is central to our humanity, this kind of research raises profound neuroethics issues, including questions about personal identity, and socially acceptable limits on novel neurotechnologies. Further, research involving participants with brain disorders is complex because these disorders can affect cognition, emotion, behavior, and decision-making capacity. In this project, Dr. Roberts and colleagues will assess the neuroethics issues encountered in neuroscience research related to mental illness and addiction through interviews with neuroscientists, neuroethicists, and institutional review board members. They will also study factors that influence research decision-making by people with mental illness and addiction, as compared with healthy controls and people with diabetes. Finally, they will develop a screening tool to enhance informed consent, as an evidence-informed practice to facilitate ethically sound cutting-edge human neuroscience research.
Ethics of Patients and Care Partners Perspectives on Personality Change in Parkinsons disease and Deep Brain Stimulation Kubu, Cynthia M. S. Cleveland Clinic Lerner Com-cwru 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
The nature and extent of personality changes following deep brain stimulation (DBS) for the treatment of Parkinson's disease (PD) are unclear. Dr. Kubu and colleagues will analyze patients’ and caregivers’ perspectives on personality characteristics (e.g., extroversion, humility) at different stages of PD and over the course of DBS (patients within one year of diagnosis, within 5 -7 years of diagnosis, and those undergoing DBS). This study will shed light on participant's most valued personality characteristics, and whether those characteristics are captured in the existing informed consent process; the influence of PD and/or DBS on personality; and the extent of agreement between patients’ and caregivers’ perceptions of personality change. These data will facilitate an enhanced, iterative informed consent process that includes systematic assessment of patients’ perceived personality changes, values, and goals; will inform understanding of identity and autonomy in the context of DBS; and may allow clinicians to ease the fears of patients receiving DBS.
Human Agency and Brain-Computer Interfaces: Understanding users? experiences and developing a tool for improved consent Goering, Sara (contact) Klein, Eran University Of Washington 2018 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools

Agency, our ability to act and experience a sense of responsibility for our actions, is central to individual identity and societal conceptions of moral responsibility. Neural devices are currently used to treat some brain disorders, such as Parkinson’s disease, and are being developed to treat others such as depression and obsessive-compulsive disorder, yet their use raises important ethical concerns about potential effects on agency. Dr. Goering, Dr. Klein and their team will investigate agency in individuals receiving brain computer interface devices for sensory, motor, communication, and psychiatric indications. They aim to build a user-centered neural agency framework, and, ultimately, to enhance the informed consent process by developing a communication tool that patient participants might use to better understand and discuss potential changes in agency associated with use of neural devices.

Informing Choice for Neurotechnological Innovation in Pediatric Epilepsy Surgery Illes, Judy (contact) Mcdonald, Patrick University Of British Columbia 2018 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools

More than 500,000 children in the US and Canada suffer from epilepsy and 30% of these children continue to experience seizures despite being treated with anti-seizure medication. Unmanaged, epilepsy can result in cognitive decline, social isolation, and poor quality of life, and has substantial economic impact on families and society. Novel approaches for treating epilepsy such as vagal nerve stimulation and responsive neurostimulation are being developed, but this work has been conducted predominately in adults and the outcomes of these trials are often not clearly generalizable to children. In this project, Drs. Illes and McDonald will explore ethical issues confronting families and clinicians when considering new treatment options for drug-resistant epilepsy in children. They aim to develop, evaluate, and deliver patient-directed resources in the form of infographics and informational materials and videos, and clinician resources for family decision-making, clinician counseling, and care.

Is the Treatment Perceived to be Worse than the Disease?: Ethical Concerns and Attitudes towards Psychiatric Electroceutical Interventions Cabrera Trujillo, Laura Yenisa Michigan State University 2018 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools

The NIH BRAIN Initiative aims to catalyze novel tools and technologies to modulate brain circuit function, paving the way for new treatment options for brain disorders. However, such interventions also have the potential to cause unintended changes in aspects of cognition, behavior, and emotion. These changes, in turn, raise concerns regarding autonomy, personal identity, and capacity for informed consent. In this study, Dr. Cabrera Trujillo and her team will study ethical concerns, beliefs, and attitudes about the use of novel bioelectric approaches among clinicians, patients, and the broader public. The work will provide stakeholder perspectives that will be valuable for informing the responsible development and use of these novel neurotechnologies.

Leveraging ethical dissension among capacity, beneficence and justice in clinical trials of neurotherapeutics in the severely disabled: lessons from schizophrenia Davis, Rachel A Gault, Judith Morse (contact) Saks, Elyn R. University Of Colorado Denver 2019 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools

Individuals with severe, disabling, chronic mental illness, such as treatment-refractory schizophrenia/schizoaffective disorder (TRS), have often been excluded from research, leading to challenges in developing treatment for their illnesses as well as access to that treatment. Here, Dr. Judith Gault will examine the ethical issues that will lay a foundation for conducting clinical research in TRS patients who have traditionally been excluded in studies. These ethical principles will include transparency, accessibility and safety of clinical trials testing neurosurgical intervention in TRS patients who are in urgent need of effective novel interventions. The team will explore the ethical implications of excluding individuals based on their capacity to consent, surgical risks, and severity of symptoms for a planned clinical trial to treat TRS. Successful completion of the project could revolutionize our understanding of how to overcome research disparities among severely disabled individuals by improving transparency, accessibility, and safety of clinical trials.

Neuroethics of aDBS Systems Targeting Neuropsychiatric and Movement Disorders Goodman, Wayne K Lazaro-munoz, Gabriel (contact) Mcguire, Amy Lynn Baylor College Of Medicine 2017 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools
A technological advance beyond traditional, open-loop DBS devices, adaptive deep brain stimulation (aDBS) devices monitor local neural activity to adjust stimulation in real time when treating certain movement and neuropsychiatric disorders. However, because aDBS devices autonomously record neural data and provide neuromodulation to affect motor function and mood, these systems raise important neuroethics issues, including changes in perception of autonomy and personal identity; risk-taking propensity; and privacy, use, and ownership of neural data. In this project, Dr. Lazaro-Munoz and colleagues will gather data from participants in existing aDBS clinical trials, their caregivers, people who declined to receive aDBS, and the aDBS researchers, to identify and assess the most pressing neuroethics issues related to aDBS research and translation. The long-term goal of this research program is to develop an empirically-informed and ethically-justified framework for the responsible development and clinical translation of aDBS systems, which will help maximize the social utility of this type of novel neurotechnology.
Pediatric Deep Brain Stimulation: Neuroethics and Decision Making Blumenthal-barby, Jennifer Lazaro-munoz, Gabriel (contact) Storch, Eric A. Baylor College Of Medicine 2019 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools

Deep brain stimulation (DBS) is currently used in children with dystonia, epilepsy, and Tourette Syndrome, and this use is expanding to other neuropsychiatric conditions. In doing so, there are several challenging ethical issues, and no consistent guidance on the use of DBS in pediatric populations. To address this challenge, Dr. Gabriel Lazaro-Munoz and team will examine neuroethics issues and decisional and informational needs of families by conducting interviews with pDBS stakeholders (minors, caregivers, and clinicians). These interviews will inform the development of a decision aid for caregivers considering DBS for dystonia, the most common use of pDBS. This project will provide key information about the ethical issues facing families, minors, and clinicians alike when considering pDBS, as well as develop a clinical decision aid for making informed, patient-centered decisions surrounding the clinical use of invasive neuromodulation in minors.

The Brainstorm Project: A Collaborative Approach to Facilitating the Neuroethics of Bioengineered Brain Modeling Research Hyun, Insoo Case Western Reserve University 2018 Active
  • Cell Type
  • Circuit Diagrams
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity
  • Theory & Data Analysis Tools

Organoids, grown in laboratory settings to resemble parts of the developing human brain, hold great potential for shedding light on human brain function and disease. Researchers are working to achieve key bioengineering advancements, including successful vascularization of brain organoids, generating the full complement of cell types present in a human brain, and recording and modulating neural activity in organoids. These anticipated advances in bioengineered human brain modeling research may raise ethical questions about the moral status of large, complex human brain organoids and ethical boundaries on manipulating increasingly realistic engineered brain models. In this project, Dr. Hyun will lead proactive ethical discussions among ethicists and the neuroscientists conducting this cutting-edge work to develop greater awareness and understanding of these ethical implications and to inform future management of ethical issues that may be unique to this novel area of brain research.