Notices of Funding Opportunities

National Institutes of Health (NIH) BRAIN Initiative notices of funding opportunities (NOFOs), requests for applications (RFAs), program announcements (PAs), and other NIH Guide announcements are listed below. Search this page to find all notices of special interest (NOSI). Search the Closed Opportunities page to find expired opportunities.  

Learn more about NIH’s grant mechanisms.  

Learn about the Plan for Enhancing Diverse Perspectives (PEDP), a required component in most BRAIN applications.  

Learn about the NIH Data Management and Sharing Policy, which all NIH applications must follow.  

To see more NIH-funded awards, please visit NIH Grants and Funding.

For more about NIH BRAIN Initiative research and associated funding opportunities, visit the Research Overview.

Title
Release Date
Expiration Date
Funding Opportunity #
Research on the Ethical Implications of Advancements in Neurotechnology and Brain Science
December 08 , 2017
RFA-MH-18-500

This funding opportunity announcement (FOA), in support of the NIH Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, is one of several FOAs aimed at supporting transformative discoveries that will lead to breakthroughs in understanding human brain function. Guided by the long-term scientific plan, “BRAIN 2025: A Scientific Vision,” this FOA specifically seeks to support efforts addressing core ethical issues associated with research focused on the human brain and resulting from emerging technologies and advancements supported by The BRAIN Initiative®. The hope is that efforts supported under this FOA might be both complementary and integrative with the transformative, breakthrough neuroscience discoveries supported through The BRAIN Initiative®.

New Concepts and Early - Stage Research for Large - Scale Recording and Modulation in the Nervous System
October 27 , 2017
RFA-EY-17-002

A central goal of The BRAIN Initiative® is to understand how electrical and chemical signals code information in neural circuits and give rise to sensations, thoughts, emotions and actions. While currently available technologies can provide some understanding, they may not be sufficient to accomplish this goal. For example, non-invasive technologies are low resolution and/or provide indirect measures such as blood flow, which are imprecise; invasive technologies can provide information at the level of single neurons producing the fundamental biophysical signals, but they can only be applied to tens or hundreds of neurons, out of a total number in the human brain estimated at 85 billion. Other BRAIN FOAs seek to develop novel technology (RFA-NS-17-003) or to optimize existing technology ready for in-vivo proof-of-concept testing and collection of preliminary data (RFA-NS-17-004) for recording or manipulating neural activity on a scale that is beyond what is currently possible. This FOA seeks applications for unique and innovative technologies that are in an even earlier stage of development than that sought in other FOAs, including new and untested ideas that are in the initial stages of conceptualization. In addition to experimental approaches, the support provided under this FOA might enable calculations, simulations, computational models, or other mathematical techniques for demonstrating that the signal sources and/or measurement technologies are theoretically capable of meeting the demands of large-scale recording or manipulation of circuit activity in humans or in animal models. The support might also be used for building and testing phantoms, prototypes, in-vitro or other bench-top models in order to validate underlying theoretical assumptions in preparation for future FOAs aimed at testing in animal models. Invasive or non-invasive approaches are sought that will ultimately enable or reduce the current barriers to large-scale recording or manipulation of neural activity, and that would ultimately be compatible with experiments in humans or behaving animals. Applications are encouraged from any qualified individuals, including physicists, engineers, theoreticians, and scientists, especially those not typically involved with neuroscience research.

BRAIN Initiative: Targeted BRAIN Circuits Projects - TargetedBCP (R01)
March 09 , 2017

This FOA solicits applications for research projects that use innovative, methodologically-integrated approaches to understand how circuit activity gives rise to mental experience and behavior. The goal is to support projects that can realize a meaningful outcome within 5 years. Applications should address circuit function in the context of specific neural systems such as sensation, perception, attention, reasoning, intention, decision-making, emotion, navigation, communication or homeostasis. Projects should link theory and data analysis to experimental design and should produce predictive models as deliverables. Projects should aim to improve the understanding of circuits of the central nervous system by systematically controlling stimuli and/or behavior while actively recording and/or manipulating dynamic patterns of neural activity. Projects can use non-human animal species, and applications should explain how the selected species offers ideal conditions for revealing general principles about the circuit basis of a specific behavior.

BRAIN Initiative: Exploratory Targeted BRAIN Circuits Projects - eTargetedBCP (R21)
March 09 , 2017

This FOA solicits applications for exploratory research projects that use innovative, methodologically-integrated approaches to understand how circuit activity gives rise to mental experience and behavior. Applications should offer a limited scope of aims and an approach that will establish feasibility, validity or other technically qualifying results that, if successful, would support a potential, subsequent Targeted Brain Circuits Projects - TargetedBCP R01, as described in the companion FOA (RFA-NS-17-014).

BRAIN Initiative: Team-Research BRAIN Circuit Programs - TeamBCP (U19)
October 18 , 2017

This FOA will support integrated, interdisciplinary research teams from prior BRAIN technology and/or integrated approaches teams, and/or new projects from the research community that focus on examining circuit functions related to behavior, using advanced and innovative technologies. The goal will be to support programs with a team science approach that can realize meaningful outcomes within 5-plus years. Awards will be made for 5 years, with a possibility of one competing renewal. Applications should address overarching principles of circuit function in the context of specific neural systems underlying sensation, perception, emotion, motivation, cognition, decision-making, motor control, communication, or homeostasis. Applications should incorporate theory-/model-driven experimental design and should offer predictive models as deliverables. Applications should seek to understand circuits of the central nervous system by systematically controlling stimuli and/or behavior while actively recording and/or manipulating relevant dynamic patterns of neural activity and by measuring the resulting behaviors and/or perceptions. Applications are expected to employ approaches guided by specified theoretical constructs, and are encouraged to employ quantitative, mechanistic models where appropriate. Applications will be required to manage their data and analysis methods in a prototype framework that will be developed and used in the proposed U19 project and exchanged with other U19 awardees for further refinement and development. Model systems, including the possibility of multiple species ranging from invertebrates to humans, can be employed and should be appropriately justified. Budgets should be commensurate with multi-component teams of research expertise including neurobiologists, statisticians, physicists, mathematicians, engineers, computer scientists, and data scientists, as appropriate - that seek to cross boundaries of interdisciplinary collaboration.

BRAIN Initiative: Research Opportunities Using Invasive Neural Recording and Stimulating Technologies in the Human Brain (U01)
February 02 , 2017
Invasive surgical procedures provide the unique ability to record and stimulate neurons within precisely localized brain structures in humans. Human studies using invasive technology are often constrained by a limited number of patients and resources available to implement complex experimental protocols and are rarely aggregated in a manner that addresses research questions with appropriate statistical power. Therefore, this FOA seeks applications to assemble integrated, multi-disciplinary teams to overcome these fundamental barriers. Projects should investigate high-impact questions in human neuroscience and disorders of the human nervous system. The research should be offered as experimental projects, or exploratory research and planning activities, for building teams, generating data and empirical results that will later compete for continued funding under new or ongoing FOAs of the BRAIN Initiative or under NIH Institute appropriations.
Proof of Concept Development of Early Stage Next Generation Human Brain Imaging
February 02 , 2017
RFA-EB-17-001

This funding opportunity announcement (FOA), in support of the NIH Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, aims to support early stage development of entirely new and novel noninvasive human brain imaging technologies and methods that will lead to transformative advances in our understanding of the human brain. The FOA solicits unusually bold and potentially transformative approaches and supports small scale, proof of concept development based on exceptionally innovative, original and/or unconventional concepts.

Research on the Ethical Implications of Advancements in Neurotechnology and Brain Science
January 31 , 2017
RFA-MH-17-260

This funding opportunity announcement (FOA), in support of the NIH Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, is one of several FOAs aimed at supporting transformative discoveries that will lead to breakthroughs in understanding human brain function. Guided by the long-term scientific plan, “BRAIN 2025: A Scientific Vision,” this FOA specifically seeks to support efforts addressing core ethical issues associated with research focused on the human brain and resulting from emerging technologies and advancements in research and development supported by The BRAIN Initiative®. The hope is that efforts supported under this FOA might be both complimentary and integrative with the transformative, breakthrough discoveries being supported through The BRAIN Initiative®.

Development of Next Generation Human Brain Imaging Tools and Technologies (Phase II)
February 02 , 2017
RFA-EB-17-002

This funding opportunity announcement (FOA), in support of the NIH Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, aims to support full development of entirely new or next generation noninvasive human brain imaging tools and methods that will lead to transformative advances in our understanding of the human brain. The FOA seeks innovative applications that are ready for full-scale development of breakthrough technologies with the intention of delivering working tools within the timeframe of the BRAIN Initiative (“BRAIN 2025: A Scientific Vision,” https://braininitiative.nih.gov/). This FOA represents the second stage of the tool/technology development effort that started with RFA-MH-14-217 and RFA-MH-15-200.

BRAIN Initiative Cell Census Network (BICCN) - Specialized Center on Human and Non-Human Primate Brain Cell Atlases
October 14 , 2017

This Funding Opportunity Announcement (FOA) intends to assemble a group of Specialized Collaboratories that will adopt scalable technology platforms and streamlined workflows to accelerate progress towards establishing reference cell atlases of human brain and/or non-human primate brains. A central goal of this and the three companion FOAs is to build a brain cell census resource that can be widely used throughout the research community. Watch an informational Webinar: https://youtu.be/Zd0JWzBJH5Q (Please copy and paste the url in your browser)

Export to:
A maximum of 400 records can be exported.