Notices of Funding Opportunities

National Institutes of Health (NIH) BRAIN Initiative notices of funding opportunities (NOFOs), requests for applications (RFAs), program announcements (PAs), and other NIH Guide announcements are listed below. Search this page to find all notices of special interest (NOSI). Search the Closed Opportunities page to find expired opportunities.  

Learn more about NIH’s grant mechanisms.  

Learn about the Plan for Enhancing Diverse Perspectives (PEDP), a required component in most BRAIN applications.  

Learn about the NIH Data Management and Sharing Policy, which all NIH applications must follow.  

To see more NIH-funded awards, please visit NIH Grants and Funding.

For more about NIH BRAIN Initiative research and associated funding opportunities, visit the Research Overview.

Title
Release Date
Expiration Date
Funding Opportunity #
BRAIN Initiative: Development and Validation of Novel Tools to Probe Cell-Specific and Circuit-Specific Processes in the Brain (R01 Clinical Trial Not Allowed)
February 09 , 2027

The purpose of this Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative is to encourage applications that will develop and validate novel tools to facilitate the detailed analysis of complex circuits and provide insights into cellular interactions that underlie brain function. The new tools and technologies should inform and/or exploit cell-type and/or circuit-level specificity. Plans for validating the utility of the tool/technology will be an essential feature of a successful application. The development of new genetic and non-genetic tools for delivering genes, proteins and chemicals to cells of interest or approaches that are expected to target specific cell types and/or circuits in the nervous system with greater precision and sensitivity than currently established methods are encouraged. Tools that can be used in a number of species/model organisms rather than those restricted to a single species are highly desired. Applications that provide approaches that break through existing technical barriers to substantially improve current capabilities are highly encouraged.

BRAIN Initiative Advanced Postdoctoral Career Transition Award to Promote Diversity (K99/R00 Independent Clinical Trial Not Allowed)
March 14 , 2026

The purpose of the NIH BRAIN Initiative Advanced Postdoctoral Career Transition Award to Promote Diversity (K99/R00) program is to enhance workforce diversity in the neuroscience workforce and maintain a strong cohort of new and talented, NIH-supported, independent investigators from diverse backgrounds in BRAIN Initiative research areas. This program is designed to facilitate a timely transition of outstanding postdoctoral researchers with a research and/or clinical doctorate degree from mentored, postdoctoral research positions to independent, tenure-track or equivalent faculty positions. The program will provide independent NIH research support during this transition to assist awardees in launching competitive, independent research careers.

BRAIN Initiative Advanced Postdoctoral Career Transition Award to Promote Diversity (K99/R00 Independent Clinical Trial Required)
March 14 , 2026

The goal of the NIH BRAIN Initiative Advanced Postdoctoral Career Transition Award to Promote Diversity (K99/R00) program is to enhance workforce diversity in the neuroscience workforce and maintain a strong cohort of new and talented, NIH-supported, independent investigators from diverse backgrounds in BRAIN Initiative research areas. This program is designed to facilitate a timely transition of outstanding postdoctoral researchers with research and/or clinical doctorate degree from mentored, postdoctoral research positions to independent, tenure-track or equivalent faculty positions. The program will provide independent NIH research support during this transition to assist awardees in launching competitive, independent research careers.

NIH Science Education Partnership Award (SEPA) (R25 - Clinical Trial Not Allowed)
June 07 , 2025

The NIH Research Education Program (R25) supports research education activities in the mission areas of the NIH.  The overarching goal of this R25 program is to support educational activities that encourage individuals from diverse backgrounds, including those from groups underrepresented in the biomedical and behavioral sciences, to pursue further studies or careers in research. 

BRAIN Initiative: Exploratory Research Opportunities Using Invasive Neural Recording and Stimulating Technologies in the Human Brain (R61 Basic Experimental Studies with Humans Required)
September 20 , 2025

Invasive surgical procedures offer the opportunity for unique intracranial interventions such as the ability to record and stimulate intracranially within precisely localized brain structures in humans. Human studies using invasive technology are often constrained by a limited number of patients and resources available to implement complex experimental protocols and need to be aggregated in a manner that addresses research questions with appropriate statistical power. Therefore, this RFA seeks applications to assemble diverse, integrated, multi-disciplinary teams that cross boundaries of interdisciplinary collaboration to overcome these fundamental barriers and to investigate high-impact questions in human neuroscience. The research should be offered as exploratory research and planning activities to establish feasibility, proof-of-principle and early-stage development that, if successful, would support, enable, and/or lay the groundwork for a potential, subsequent Research Opportunities Using Invasive Neural Recording and Stimulating Technologies in the Human Brain, as described in the companion FOA (RFA-NS-22-041). Projects should maximize opportunities to conduct innovative in vivo neuroscience research made available by direct access to the brain from invasive surgical procedures. Projects should employ approaches guided by specified theoretical constructs and by quantitative, mechanistic models where appropriate. Awardees will join a consortium working group, coordinated by the NIH, to identify consensus standards of practice, including neuroethical considerations, to collect and provide data for ancillary studies, and to aggregate and standardize data for dissemination among the wider scientific community.

Research With Activities Related to Diversity (ReWARD) (R01 Clinical Trial Optional)
May 08 , 2026

The NIH Research With Activities Related to Diversity (ReWARD) Program's overarching goal is to enhance the breadth and geographical location of research and research-related activities supported by NIH. The ReWARD program  provides support for the health-related research of scientists who are making a significant contribution to Diversity, Equity, Inclusion, and Accessibility (DEIA) and who have no current NIH research project grant funding. The ReWARD program provides funding for both the scientific research and the DEIA activities of investigators. The grant will support scientific research in areas related to the programmatic interests of one or more of the participating NIH Institutes and Centers (ICs) and ongoing DEIA activities focused on enhancing diversity in the biomedical research enterprise within the United States and territories.

BRAIN Initiative: New Technologies and Novel Approaches for Recording and Modulation in the Nervous System (R01 Clinical Trial Not Allowed)
January 21 , 2026

Reissue of RFA-NS-18-020: Understanding the dynamic activity of brain circuits is central to the NIH BRAIN Initiative. This FOA seeks applications for proof-of-concept testing and development of new technologies and novel approaches for recording and modulation (including various modalities for stimulation/activation, inhibition and manipulation) of cells (i.e., neuronal and non-neuronal) and networks to enable transformative understanding of dynamic signaling in the central nervous system (CNS). This FOA seeks exceptionally creative approaches to address major challenges associated with recording and modulating CNS activity, at or near cellular resolution, at multiple spatial and/or temporal scales, in any region and throughout the entire depth of the brain. It is expected that the proposed research may be high-risk, but if successful, could profoundly change the course of neuroscience research. Proposed technologies should be compatible with experiments in behaving animals, validated under in vivo experimental conditions, and capable of reducing major barriers to conducting neurobiological experiments and making new discoveries about the CNS. Technologies may engage diverse types of signaling beyond neuronal electrical activity such as optical, magnetic, acoustic and/or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. If suitable, applications are expected to integrate appropriate domains of expertise, including biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.

BRAIN Initiative: Optimization of Instrumentation and Device Technologies for Recording and Modulation in the Nervous System (U01 Clinical Trials Not Allowed)
January 21 , 2026

Reissue of RFA-NS-18-019: Understanding the dynamic activity of neural circuits is central to the NIH BRAIN Initiative. The invention, proof-of-concept investigation, and optimization of new technologies through iterative feedback from end users are key components of the BRAIN Initiative. This FOA seeks applications to optimize existing or emerging technologies through iterative testing with end users. The technologies and approaches should have potential to address major challenges associated with recording and modulation (including various modalities for stimulation/activation, inhibition and manipulation) of cells (i.e., neuronal and non-neuronal) and networks to enable transformative understanding of dynamic signaling in the central nervous system (CNS). These technologies and approaches should have previously demonstrated their transformative potential through initial proof-of-concept testing and are now ready for accelerated refinement. In conjunction, the manufacturing techniques should be scalable towards sustainable, broad dissemination and user-friendly incorporation into regular neuroscience research.Proposed technologies should be compatible with experiments in behaving animals, validated under in vivo experimental conditions, and capable of reducing major barriers to conducting neurobiological experiments and making new discoveries about the CNS. Technologies may engage diverse types of signaling beyond neuronal electrical activity such as optical, electrical, magnetic, acoustic or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. If suitable, applications are expected to integrate appropriate domains of expertise, including biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.

Export to:
A maximum of 400 records can be exported.