The NIH Research Education Program (R25) supports research education activities in the mission areas of the NIH. The overarching goal of this R25 program is to support educational activities that encourage individuals from diverse backgrounds, including those from groups underrepresented in the biomedical and behavioral sciences, to pursue further studies or careers in research.
Notices of Funding Opportunities
National Institutes of Health (NIH) BRAIN Initiative notices of funding opportunities (NOFOs), requests for applications (RFAs), program announcements (PAs), and other NIH Guide announcements are listed below. Search this page to find all notices of special interest (NOSI). Search the Closed Opportunities page to find expired opportunities.
Learn more about NIH’s grant mechanisms.
Learn about the NIH Data Management and Sharing Policy, which all NIH applications must follow.
To see more NIH-funded awards, please visit NIH Grants and Funding.
For more about NIH BRAIN Initiative research and associated funding opportunities, visit the Research Overview.
Invasive surgical procedures offer the opportunity for unique intracranial interventions such as the ability to record and stimulate intracranially within precisely localized brain structures in humans. Human studies using invasive technology are often constrained by a limited number of patients and resources available to implement complex experimental protocols and need to be aggregated in a manner that addresses research questions with appropriate statistical power. Therefore, this RFA seeks applications to assemble diverse, integrated, multi-disciplinary teams that cross boundaries of interdisciplinary collaboration to overcome these fundamental barriers and to investigate high-impact questions in human neuroscience. The research should be offered as exploratory research and planning activities to establish feasibility, proof-of-principle and early-stage development that, if successful, would support, enable, and/or lay the groundwork for a potential, subsequent Research Opportunities Using Invasive Neural Recording and Stimulating Technologies in the Human Brain, as described in the companion FOA (RFA-NS-22-041). Projects should maximize opportunities to conduct innovative in vivo neuroscience research made available by direct access to the brain from invasive surgical procedures. Projects should employ approaches guided by specified theoretical constructs and by quantitative, mechanistic models where appropriate. Awardees will join a consortium working group, coordinated by the NIH, to identify consensus standards of practice, including neuroethical considerations, to collect and provide data for ancillary studies, and to aggregate and standardize data for dissemination among the wider scientific community.
The purpose of the The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative Fellows (F32) program is to enhance the research training of promising postdoctorates, early in their postdoctoral training period, who have the potential to become productive investigators in research areas that will advance the goals of the BRAIN Initiative. Applications are encouraged in any research area that is aligned with the BRAIN Initiative, including neuroethics. Applicants are expected to propose research training in an area that clearly complements their predoctoral research. Formal training in analytical tools appropriate for the proposed research is expected to be an integral component of the research training plan. In order to maximize the training potential of the F32 award, this program encourages applications from individuals who have not yet completed their terminal doctoral degree and who expect to do so within 12 months of the application due date. On the application due date, candidates may not have completed more than 12 months of postdoctoral training.
Reissue of RFA-NS-18-020: Understanding the dynamic activity of brain circuits is central to the NIH BRAIN Initiative. This FOA seeks applications for proof-of-concept testing and development of new technologies and novel approaches for recording and modulation (including various modalities for stimulation/activation, inhibition and manipulation) of cells (i.e., neuronal and non-neuronal) and networks to enable transformative understanding of dynamic signaling in the central nervous system (CNS). This FOA seeks exceptionally creative approaches to address major challenges associated with recording and modulating CNS activity, at or near cellular resolution, at multiple spatial and/or temporal scales, in any region and throughout the entire depth of the brain. It is expected that the proposed research may be high-risk, but if successful, could profoundly change the course of neuroscience research. Proposed technologies should be compatible with experiments in behaving animals, validated under in vivo experimental conditions, and capable of reducing major barriers to conducting neurobiological experiments and making new discoveries about the CNS. Technologies may engage diverse types of signaling beyond neuronal electrical activity such as optical, magnetic, acoustic and/or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. If suitable, applications are expected to integrate appropriate domains of expertise, including biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.
Reissue of RFA-NS-18-019: Understanding the dynamic activity of neural circuits is central to the NIH BRAIN Initiative. The invention, proof-of-concept investigation, and optimization of new technologies through iterative feedback from end users are key components of the BRAIN Initiative. This FOA seeks applications to optimize existing or emerging technologies through iterative testing with end users. The technologies and approaches should have potential to address major challenges associated with recording and modulation (including various modalities for stimulation/activation, inhibition and manipulation) of cells (i.e., neuronal and non-neuronal) and networks to enable transformative understanding of dynamic signaling in the central nervous system (CNS). These technologies and approaches should have previously demonstrated their transformative potential through initial proof-of-concept testing and are now ready for accelerated refinement. In conjunction, the manufacturing techniques should be scalable towards sustainable, broad dissemination and user-friendly incorporation into regular neuroscience research.Proposed technologies should be compatible with experiments in behaving animals, validated under in vivo experimental conditions, and capable of reducing major barriers to conducting neurobiological experiments and making new discoveries about the CNS. Technologies may engage diverse types of signaling beyond neuronal electrical activity such as optical, electrical, magnetic, acoustic or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. If suitable, applications are expected to integrate appropriate domains of expertise, including biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.