Causally linking dendritic Ca2+ dynamics to CA1 circuit function and spatial learning using novel tools to precisely manipulate an endogenous Ca2+ buffering process
In dendrites, Ca2+ is critical in determining how neurons respond to incoming excitation. While numerous studies have focused on how dendritic Ca2+ relates to behaviorally-relevant neuronal and circuit activity using correlative observations, there is currently no method to precisely manipulate Ca2+ in neurons in vivo and thus causally test its role in circuit function and behavior. In non-neuronal cells, mitochondria can act as sinks for Ca2+ released from the endoplasmic reticulum (ER) by forming direct contacts with these concentrated intracellular Ca2+ stores.