Cooperative Agreements

Defining cell types, lineage, and connectivity in developing human fetal cortex

 DESCRIPTION (provided by applicant): Little is currently known about the number, proportion, or lineage of distinct cell types in the developing human fetal brain. Knowledge of such a component list and its functional genomic foundations is crucial for understanding the function of this complex system, its evolution, and how it is disrupted in disease. We hypothesize that comprehensive single-cell mRNA expression profiles provide an accurate and efficient rubric for a first generation classification schema that can be integrated with lineage, morphology and connectivity.

Development of the Human Dynamic Neurochemical Connectome Scanner

Project Summary We seek support to develop and build the next generation 7-Tesla magnetic resonance (MR)-compatible positron emission tomography (PET) brain scanner with dramatically improved spatiotemporal resolution (HSTR-BrainPET). PET and MRI are two of the most powerful imaging modalities currently in use for studying the human brain. Recently, scanners capable of simultaneous PET and MR whole-body data acquisition in human subjects have become commercially available.

4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents

ABSTRACT The overarching goal of this project is to optimize, validate and implement a revolutionary and safe modality for noninvasive functional imaging of neural currents deep in the human brain through the skull at unprecedented spatial and temporal resolution. Transcranial Acoustoelectric Brain Imaging (tABI) is a disruptive technology that exploits pulses of ultrasound (US) to transiently interact with physiologic current, producing a radiofrequency (RF) signature detected by one or more sensors (e.g., surface electrodes).

Lightweight, Compact, Low-Cryogen, Head-Only 7T MRI for High Spatial Resolution Brain Imaging

PROJECT SUMMARY/ABSTRACT An innovative head-only 7T MRI system that delivers spatial resolution that is difficult to achieve with today's whole-body 7T systems, and has the footprint and weight of a whole-body 3T scanner is proposed. This new im- aging system combines a high-performance asymmetrical head gradient that delivers 130 mT/m and 900 T/m/s performance in an actively shielded, low-cryogen, lightweight head-only 7T magnet.

High SNR Functional Brain Imaging using Oscillating Steady State MRI

Project Summary: High SNR Functional Brain Imaging using Oscillating Steady State MRI Functional brain imaging using MRI (functional MRI or fMRI) has grown rapidly over the past 25 years and is widely used for basic cognitive neuroscience research and for presurgical planning. It is increasingly being used for developing biomarkers for neurological and psychiatric disorders and for population based studies of, for example, normal and abnormal development and aging.

Breaking Spatiotemporal Barriers of MR Imaging Technologies to Study Human Brain Function and Neuroenergetics

PROJECT SUMMARY    Understanding how neural circuits operate and interconnect at mesoscopic (sub-­millimeter) scale, and how  neuroenergetic  metabolism  and  neurotransmitters  support  brain  function  at  resting  and  working  state  is  essential to brain research and 

Connectome 2.0: Developing the next generation human MRI scanner for bridging studies of the micro-, meso- and macro-connectome

SUMMARY We present Connectome 2.0, the next-generation human MRI scanner for imaging structural anatomy and connectivity spanning the microscopic, mesoscopic and macroscopic scales. This work builds upon our expertise in engineering the first human Connectome MRI scanner with 300 mT/m maximum gradient strength (Gmax), the highest ever achieved for a human system, for the Human Connectome Project (HCP). The goal of the HCP was to map the macroscopic structural connections of the in vivo healthy adult human brain using diffusion tractography.

Ultra High Resolution Brain PET Scanner for in-vivo Autoradiography Imaging

We propose to design, build, and evaluate the Scanner Approaching in Vivo Autoradiographic Neuro Tomography (SAVANT), a next generation PET scanner for ultra-high resolution imaging of the human brain using hardware advances developed by members of our collaborative team to achieve unprecedented spatial resolution and count rate capabilities. The system will have a volumetric resolution close to 1 mm3 (isotropic spatial resolution close to 1 mm), which is approximately 27 fold better than the best dedicated brain PET scanners and 125 fold better than general purpose PET scanners.

Wireless High-Density Diffuse Optical Tomography for Decoding Brain Activity

Project Summary This grant will develop a wireless wearable high-performance, high-density diffuse optical tomography (DOT) instrument for mapping of brain function in naturalistic settings. Functional neuroimaging of healthy adults has enabled mapping of brain function and revolutionized cognitive neuroscience. Increasingly, functional neuroimaging is being used in younger age groups, and as a diagnostic and prognostic tool in the clinical setting. Its expanding application in the study of both health and disease necessitates new, more flexible tools.

A wearable functional-brain-imaging system with full-head coverage and enhanced spatiotemporal-resolution to study complex neural circuits in human subjects

PROJECT SUMMARY/ABSTRACT To develop maps at multiple scales of neuronal circuits in the human brain and study the brain dynamics, there is a need for non-invasive functional brain imaging with high spatiotemporal resolution operating in natural environments. Among non-invasive functional brain imaging methods, magnetoencephalography (MEG) is the only technology that can map cortical activity down to millimeter spatial resolution with millisecond time resolution. Current cryogenic MEG systems employ superconducting quantum interference device (SQUID) magnetometers.

Export to:
A maximum of 400 records can be exported.