Cooperative Agreements

Time-Gated Diffuse Correlation Spectroscopy for functional imaging of the human brain

Project Summary/Abstract Functional near-infrared spectroscopy (fNIRS) is a well-established neuroimaging method which enables neuroscientists to study brain activity by non-invasively monitoring hemodynamic changes in the cerebral cortex. In the last decade, the use of fNIRS has increased significantly with the formation of a society, with an exponential growth of users and publications, and with an increasing number of available commercial instruments.

4D Transcranial Acoustoelectric Imaging for High Resolution Functional Mapping of Neuronal Currents

ABSTRACT The overarching goal of this project is to develop, validate and implement a new modality for noninvasive functional imaging of neural currents deep in the human brain through the skull at unprecedented spatial and temporal resolution. Transcranial Acoustoelectric Brain Imaging (tABI) is a disruptive technology that exploits an ultrasound (US) beam to transiently interact with physiologic current, producing a radiofrequency signature detected by one or more surface electrodes.

NeuroExplorer: Ultra-high Performance Human Brain PET Imager for Highly-resolved In Vivo Imaging of Neurochemistry

Research applications of brain Positron Emission Tomography (PET) have been in place for over 40 years. The combination of quantitative PET systems with novel radiotracers has led to a numerous imaging para- digms to understand normal brain physiology including neurotransmitter dynamics and receptor pharmacology at rest and during activation. Brain-dedicated PET systems offer important advantages over currently available PET systems in terms of sensitivity and resolution. However, the state-of-the-art for brain PET has not progressed beyond the 20-year-old HRRT.

Toward functional molecular neuroimaging using vasoactive probes in human subjects

We propose to develop a probe technology for monitoring human brain function with molecular precision; in conjunction with magnetic resonance imaging (MRI) or other imaging modalities, the probes will provide a combination of sensitivity and resolution that could permit unprecedented noninvasive studies of dynamic neu- rophysiological processes in people.

A magnetic particle imager (MPI) for functional brain imaging in humans

In this U01 grant we propose a 5 year engineering development effort to advance Magnetic Particle Imaging (MPI) to replace MRI as the next-generation functional brain imaging tool for human neuroscience. MPI is a young but extremely promising technology that uses the non-linear magnetic response of ironoxide nanoparticles to localize their presence in the body. MPI directly detects the nanoparticle's magnetization rather than using secondary effects on the Magnetic Resonance relaxation times.

Imaging Human Brain Function with Minimal Mobility Restrictions

Magnetic resonance imaging (MRI), by offering the sole means of imaging human brain structure and activity with high spatial resolution, has evolved into an indispensable tool for studying brain function in health and disease. It is uniquely suited to examining the neural basis of higher order behaviors and cognition, as well as neurodegenerative and developmental disorders, for which animal models are of limited applicability. Yet, because of current experimental limitations, there is wide range of subjects and human behaviors that are completely inaccessible by MRI techniques.

MRI CORTICOGRAPHY: DEVELOPING NEXT GENERATION MICROSCALE HUMAN CORTEX MRI SCANNER

SUMMARY The overarching objective of our proposal is to bring noninvasive human brain imaging into the microscale (50-500 micron isotropic) resolution in order to create a tool for studies of neuronal circuitry and network organization in the human brain. Our breakthrough technology, MR Corticography (MRCoG), represents substantial advances over existing MRI approaches. MRCoG achieves dramatic gains in spatial and temporal resolutions by focusing several different types of coil arrays on the cerebral cortex of the live human brain.

Export to:
A maximum of 400 records can be exported.