Understanding the dynamic activity of neural circuits is central to the NIH BRAIN Initiative. This FOA seeks applications for proof-of-concept testing and development of new technologies and novel approaches for large scale recording and manipulation of neural activity, to enable transformative understanding of dynamic signaling in the nervous system. In particular we seek exceptionally creative approaches to address major challenges associated with recording and manipulating neural activity, at or near cellular resolution, at multiple spatial and/or temporal scales, in any region and throughout the entire depth of the brain. It is expected that the proposed research may be high risk, but if successful could profoundly change the course of neuroscience research. Proposed technologies should be compatible with experiments in behaving animals, and should include advancements that enable or reduce major barriers to hypothesis-driven experiments. Technologies may engage diverse types of signaling beyond neuronal electrical activity for large-scale analysis, and may utilize any modality such as optical, electrical, magnetic, acoustic or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. Where appropriate, applications are expected to integrate appropriate domains of expertise, including biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.
Notices of Funding Opportunities
National Institutes of Health (NIH) BRAIN Initiative notices of funding opportunities (NOFOs), requests for applications (RFAs), program announcements (PAs), and other NIH Guide announcements are listed below. Search this page to find all notices of special interest (NOSI). Search the Closed Opportunities page to find expired opportunities.
Learn more about NIH’s grant mechanisms.
Learn about the NIH Data Management and Sharing Policy, which all NIH applications must follow.
To see more NIH-funded awards, please visit NIH Grants and Funding.
For more about NIH BRAIN Initiative research and associated funding opportunities, visit the Research Overview.
Although invention and proof-of-concept testing of new technologies are key components of the BRAIN Initiative, to achieve their potential these technologies must also be optimized through feedback from end-users in the context of the intended experimental use. In this FOA we seek applications for the optimization of existing and emerging technologies and approaches that have potential to address major challenges associated with recording and manipulating neural activity, at or near cellular resolution, at multiple spatial and temporal scales, in any region and throughout the entire depth of the brain. This FOA is intended for the iterative refinement of emergent technologies and approaches that have already demonstrated their transformative potential through initial proof-of-concept testing, and are appropriate for accelerated development of hardware and software while scaling manufacturing techniques towards sustainable, broad dissemination and user-friendly incorporation into regular neuroscience practice. Proposed technologies should be compatible with experiments in behaving animals, and should include advancements that enable or reduce major barriers to hypothesis-driven experiments. Technologies may engage diverse types of signaling beyond neuronal electrical activity for large-scale analysis, and may utilize any modality such as optical, electrical, magnetic, acoustic or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. Applications are expected to apply expertise that integrates appropriate domains of expertise, including where appropriate biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.
Understanding the dynamic activity of neural circuits is central to the NIH BRAIN Initiative. This FOA seeks applications for proof-of-concept testing and development of new technologies and novel approaches for large scale recording and manipulation of neural activity, to enable transformative understanding of dynamic signaling in the nervous system. In particular we seek exceptionally creative approaches to address major challenges associated with recording and manipulating neural activity, with cellular resolution, at multiple spatial and/or temporal scales, in any region and throughout the entire depth of the brain. It is expected that the proposed research may be high risk, but if successful could profoundly change the course of neuroscience research.
Although invention and proof-of-concept testing of new technologies is a key component of the BRAIN Initiative, to achieve their potential these technologies must also be optimized through feedback from end-users in the context of the intended experimental use. In this FOA we seek applications for the optimization of existing and emerging technologies and approaches that have potential to address major challenges associated with recording and manipulating neural activity, with cellular resolution, at multiple spatial and temporal scales, in any region and throughout the entire depth of the brain. This FOA is intended for the iterative refinement of emergent technologies and approaches that have already demonstrated their transformative potential through initial proof-of-concept testing, and are appropriate for accelerated engineering development with an end-goal of broad dissemination and incorporation into regular neuroscience practice.
aims to develop and validate novel tools that possess a high degree of cell-type and/or circuit-level specificity to facilitate the detailed analysis of complex circuits and provide insights into cellular interactions that underlie brain function. A particular emphasis is the development of new genetic and non-genetic tools for delivering genes, proteins and chemicals to cells of interest; new approaches are also expected to target specific cell types and or circuits in the nervous system with greater precision and sensitivity than currently established methods.
aims to create teams of imaging scientist together with other experts from a range of disciplines such as engineering, material sciences, nanotechnology and computer science, to plan for a new generation of non-invasive imaging techniques that would be used to understand human brain function. Incremental improvements to existing technologies will not be funded under this announcement.
aims to pilot classification strategies to generate a systematic inventory/cell census of cell types in the brain, integrating molecular identity of cell types with connectivity, morphology, and location. These pilot projects and methodologies should be designed to demonstrate their utility and scalability to ultimately complete a comprehensive cell census of the human brain.