Funding Opportunity Announcements

Export All:
Title FOA # Status Expires Priority Area Purpose
Exploratory Team-Research BRAIN Circuit Programs - eTeamBCP (U01 Clinical Trial Not Allowed) Open June 10, 2019
  • Integrated Approaches

The purpose of this FOA is to promote the integration of experimental, analytic, and theoretical capabilities for large-scale analysis of neural systems and circuits. This FOA seeks applications for exploratory research studies that use new and emerging methods for large scale recording and manipulation of neural circuits across multiple brain regions. Applications should propose to elucidate the contributions of dynamic circuit activity to a specific behavioral or neural system. Applications should seek to understand circuits of the central nervous system by systematically controlling stimuli and/or behavior while actively recording and/or manipulating relevant dynamic patterns of neural activity and by measuring the resulting behaviors and/or perceptions. Studies should incorporate rich information on cell-types, on circuit functionality and connectivity, and should be performed in conjunction with sophisticated analysis of complex, ethologically relevant behaviors. Applications should propose teams of investigators that seek to cross boundaries of interdisciplinary collaboration by bridging fields and linking theory and data analysis to experimental design. Exploratory studies supported by this FOA are intended to develop experimental capabilities and quantitative, theoretical frameworks in preparation for a future competition for larger-scale, multi-component, Team-Research BRAIN Circuit Programs (U19).

Targeted BRAIN Circuits Planning Projects - TargetedBCPP - Clinical Trial Not Allowed Open July 15, 2019
  • Integrated Approaches

This R34 FOA solicits applications that offer a limited scope of aims and an approach that will establish feasibility, validity, or other technically qualifying results that, if successful, would support, enable, and/or lay the groundwork for a potential, subsequent Targeted Brain Circuits Projects - TargetedBCP R01, as described in the companion FOA (RFA-NS-18-009). Applications should be exploratory research projects that use innovative, methodologically-integrated approaches to understand how circuit activity gives rise to mental experience and behavior.

Theories, Models and Methods for Analysis of Complex Data from the Brain (Clinical Trial Not Allowed) Open September 03, 2019
  • Integrated Approaches
  • Theory & Data Analysis Tools

--- Notice to change the Application Due Dates on BRAIN Initiative - NOT-EB-18-005 - https://grants.nih.gov/grants/guide/notice-files/NOT-EB-18-005.html --- This FOA solicits new theories, computational models, and statistical tools to derive understanding of brain function from complex neuroscience data. Proposed tools could include the creation of new theories, ideas, and conceptual frameworks to organize/unify data and infer general principles of brain function; new computational models to develop testable hypotheses and design/drive experiments; and new mathematical and statistical methods to support or refute a stated hypothesis about brain function, and/or assist in detecting dynamical features and patterns in complex brain data. It is expected that the tools developed under this FOA will be made widely available to the neuroscience research community for their use and modification. Investigative studies should be limited to validity testing of the tools being developed.

BRAIN Initiative: Research Opportunities Using Invasive Neural Recording and Stimulating Technologies in the Human Brain (U01 Clinical Trial Required) Open October 19, 2020
  • Human Neuroscience
  • Integrated Approaches
  • Interventional Tools
  • Monitor Neural Activity

Invasive surgical procedures provide the unique ability to record and stimulate neurons within precisely localized brain structures in humans. Human studies using invasive technology are often constrained by a limited number of patients and resources available to implement complex experimental protocols and are rarely aggregated in a manner that addresses research questions with appropriate statistical power. Therefore, this RFA seeks applications to assemble diverse, integrated, multi-disciplinary teams that cross boundaries of interdisciplinary collaboration to overcome these fundamental barriers and to investigate high-impact questions in human neuroscience. Projects should maximize opportunities to conduct innovative in vivo neuroscience research made available by direct access to brain recording and stimulating from invasive surgical procedures. Projects should employ approaches guided by specified theoretical constructs and quantitative, mechanistic models where appropriate. Awardees will join a consortium work group, coordinated by the NIH, to identify consensus standards of practice, including neuroethical considerations, to collect and provide data for ancillary studies, and to aggregate and standardize data for dissemination among the wider scientific community.

BRAIN Initiative: Team-Research BRAIN Circuit Programs - TeamBCP (U19 Clinical Trial Required) Open October 30, 2020
  • Integrated Approaches

This RFA will support integrated, interdisciplinary research teams from prior BRAIN technology and/or integrated approaches teams, and/or new projects from the research community that focus on examining circuit functions related to behavior, using advanced and innovative technologies. The goal will be to support programs with a team science approach that can realize meaningful outcomes within 5-plus years. Awards will be made for 5 years, with a possibility of one renewal. Projects will incorporate overarching principles of circuit function in the context of specific neural systems underlying sensation, perception, emotion, motivation, cognition, decision-making, motor control, communication, or homeostasis. Applications should incorporate theory-/model-driven experimental design and should offer predictive models as deliverables. Applications should seek to understand circuits of the central nervous system by systematically controlling stimuli and/or behavior while actively recording and/or manipulating relevant dynamic patterns of neural activity and by measuring the resulting behaviors and/or perceptions. Applications are expected to employ approaches guided by specified theoretical constructs, and are encouraged to employ quantitative, mechanistic models where appropriate. Applications will be required to manage their data and analysis methods in a prototype framework that will be developed and used in the proposed U19 project and exchanged with other BRAIN U19 awardees for further refinement and development. Model systems, including the possibility of multiple species ranging from invertebrates to humans, can be employed and should be appropriately justified. Programs should employ multi-component teams of research expertise – including neurobiologists, statisticians, physicists, mathematicians, engineers, computer scientists, and data scientists, as appropriate - that seek to cross boundaries of interdisciplinary collaboration. Applicants proposing programs that do not include human subjects with invasive neural recording must apply to the companion FOA, RFA-NS-19-003.

BRAIN Initiative: Team-Research BRAIN Circuit Programs - TeamBCP (U19 Clinical Trial Not Allowed) Open October 30, 2020
  • Integrated Approaches

This RFA will support integrated, interdisciplinary research teams from prior BRAIN technology and/or integrated approaches teams, and/or new projects from the research community that focus on examining circuit functions related to behavior, using advanced and innovative technologies. The goal will be to support programs with a team science approach that can realize meaningful outcomes within 5-plus years. Awards will be made for 5 years, with a possibility of one renewal. Projects will incorporate overarching principles of circuit function in the context of specific neural systems underlying sensation, perception, emotion, motivation, cognition, decision-making, motor control, communication, or homeostasis. Applications should incorporate theory-/model-driven experimental design and should offer predictive models as deliverables. Applications should seek to understand circuits of the central nervous system by systematically controlling stimuli and/or behavior while actively recording and/or manipulating relevant dynamic patterns of neural activity and by measuring the resulting behaviors and/or perceptions. Applications are expected to employ approaches guided by specified theoretical constructs, and are encouraged to employ quantitative, mechanistic models where appropriate. Applications will be required to manage their data and analysis methods in a prototype framework that will be developed and used in the proposed U19 project and exchanged with other BRAIN U19 awardees for further refinement and development. Model systems, including the possibility of multiple species ranging from invertebrates to humans, can be employed and should be appropriately justified. Programs should employ multi-component teams of research expertise – including neurobiologists, statisticians, physicists, mathematicians, engineers, computer scientists, and data scientists, as appropriate - that seek to cross boundaries of interdisciplinary collaboration. Applicants proposing to include human subjects with invasive neural recording must apply to the companion FOA, RFA-NS-19-002.

Targeted BRAIN Circuits Projects- TargetedBCP - Clinical Trial Not Allowed Open November 10, 2020
  • Integrated Approaches

This FOA solicits applications for research projects that use innovative, methodologically-integrated approaches to understand how circuit activity gives rise to mental experience and behavior. The goal is to support projects that can realize a meaningful outcome within 5 years. Applications should address circuit function in the context of specific neural systems such as sensation, perception, attention, reasoning, intention, decision-making, emotion, navigation, communication or homeostasis. Projects should link theory and data analysis to experimental design and should produce predictive models as deliverables. Projects should aim to improve the understanding of circuits of the central nervous system by systematically controlling stimuli and/or behavior while actively recording and/or manipulating dynamic patterns of neural activity. Projects can use non-human and human species, and applications should explain how the selected species offers ideal conditions for revealing general principles about the circuit basis of a specific behavior.